Clustering Algorithm Based on Fuzzy C-means and Artificial Fish Swarm
نویسندگان
چکیده
منابع مشابه
A Hybrid Method for Image Segmentation Based on Artificial Fish Swarm Algorithm and Fuzzy c-Means Clustering
Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM) clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artifici...
متن کاملA Hybrid Clustering Algorithm Based on Improved Artificial Fish Swarm
K-medoids clustering algorithm is used to classify data, but the approach is sensitive to the initial selection of the centers and the divided cluster quality is not high. Basic Artificial Fish Swarm Algorithm is a new type of heuristic swarm intelligence algorithm, but optimization is difficult to get a very high precision due to the randomness of the artificial fish behavior. A novel clusteri...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملParticle Swarm Optimization Algorithm Based k-means and Fuzzy c-means clustering
Data mining is the process of extracting hidden patterns from huge data. Among the various clustering algorithms, k-means is the one of most widely used clustering technique in data mining. The performance of k-means clustering depends on the initial clusters and might converge to local optimum. K-means does not guarantee the unique clustering because it generates different results with randoml...
متن کاملAN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM
This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Engineering
سال: 2012
ISSN: 1877-7058
DOI: 10.1016/j.proeng.2012.01.485